论文标题

故障检测和隔离不确定的非线性抛物线PDE系统

Fault Detection and Isolation of Uncertain Nonlinear Parabolic PDE Systems

论文作者

Zhang, Jingting, Yuan, Chengzhi, Zeng, Wei, Wang, Cong

论文摘要

本文提出了一种新型的故障检测和隔离(FDI)方案,用于通过具有非线性不确定动力学的一类抛物线偏微分方程(PDE)建模的分布式参数系统。建议的外国直接投资方案的关键特征是其能够处理系统不确定性对准确外国直接投资的影响。具体而言,首先得出近似的普通微分方程(ODE)系统以捕获原始PDE系统的主要动力学。然后,基于此ODE系统提出了使用径向基函数神经网络的自适应动力学识别方法,以便在正常和错误模式下实现对不确定系统动力学的局部准确识别。最终设计了具有相关自适应阈值的外国直接投资估计器银行。提供了对FDI性能的严格分析,从故障可检测性和可分解性方面进行了严格的分析。对代表性运输反应过程进行了仿真研究,以证明所提出的方法的有效性和优势。

This paper proposes a novel fault detection and isolation (FDI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FDI scheme is its capability of dealing with the effects of system uncertainties for accurate FDI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, so as to achieve locally-accurate identification of the uncertain system dynamics under normal and faulty modes. A bank of FDI estimators with associated adaptive thresholds are finally designed for real-time FDI decision making. Rigorous analysis on the FDI performance in terms of fault detectability and isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness and advantage of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源