论文标题

在线性程序中查找结构和因果关系

Finding Structure and Causality in Linear Programs

论文作者

Zečević, Matej, Busch, Florian Peter, Dhami, Devendra Singh, Kersting, Kristian

论文摘要

线性程序(LP)得到广泛庆祝,尤其是在机器学习中,他们允许有效地解决概率推理任务或对端到端学习系统强加结构。它们的潜力似乎耗尽了,但我们提出了一种基础,因果观点,揭示了LP组件的有趣内部和结构之间的结构关系。我们对通用,最短路径和能源系统LPS进行系统的实证研究。

Linear Programs (LP) are celebrated widely, particularly so in machine learning where they have allowed for effectively solving probabilistic inference tasks or imposing structure on end-to-end learning systems. Their potential might seem depleted but we propose a foundational, causal perspective that reveals intriguing intra- and inter-structure relations for LP components. We conduct a systematic, empirical investigation on general-, shortest path- and energy system LPs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源