论文标题
具有流入,流出和涡度边界条件的3D Euler方程
The 3D Euler equations with inflow, outflow and vorticity boundary conditions
论文作者
论文摘要
有界域中的3D不可压缩的Euler方程最常补充不可渗透的边界条件,这将流体限制为既不进入也不离开域。当速度的完整值在流入量上指定,或者仅指定正常分量以及涡度(以及其他约束)时,我们就以流入率,速度流出的速度流出(以及额外的约束),建立了速度的流出。我们得出兼容性条件,以在具有规定的任意索引的Hölder空间中获得规律性,并允许乘以相连的域。我们的结果也适用于不可渗透的边界,在Hölder空间中建立了更高的解决方案。
The 3D incompressible Euler equations in a bounded domain are most often supplemented with impermeable boundary conditions, which constrain the fluid to neither enter nor leave the domain. We establish well-posedness with inflow, outflow of velocity when either the full value of the velocity is specified on inflow, or only the normal component is specified along with the vorticity (and an additional constraint). We derive compatibility conditions to obtain regularity in a Hölder space with prescribed arbitrary index, and allow multiply connected domains. Our results apply as well to impermeable boundaries, establishing higher regularity of solutions in Hölder spaces.