论文标题

二进制Lennard-Jones系统的玻璃形成能力

The glass-forming ability of binary Lennard-Jones systems

论文作者

Hu, Yuan-Chao, Jin, Weiwei, Schroers, Jan, Shattuck, Mark D., O'Hern, Corey S.

论文摘要

通过关键冷却速率$ r_c $衡量的合金,胶体分散剂和其他颗粒物的玻璃形成能力(GFA)可以跨越十个数量级。即使经过许多先前的研究,控制GFA的物理特征仍然不太了解。例如,众所周知,混合物是比单分散系统更好的玻璃形成剂,并且成分之间的粒径和粘性能量差异可以改善GFA,但目前尚不知道粒度差异如何与粘性能量差异差异以确定GFA。我们执行分子动力学模拟,以确定等极二进制的Lennard-Jones(LJ)混合物的GFA与归一化的内聚能差$ε_ \ _ $,并混合能量$ \barε_{ABε_{AB} $之间的GFA。我们找到了几个重要的结果。首先,$ \ log_ {10} r_c $轮廓在$ \barε_{ab} $ - $ $ε_\ _ $平面是所有直径比的椭圆形,因此$ r_c $由Mahalanobis degm $ d_m $从$ \ bar $ \ ab ^ $ \ ab}确定的平面确定椭圆形轮廓。其次,较大颗粒具有较大粘性能的LJ系统通常比较大颗粒具有较小的内聚能量的系统更好。第三,$ d_m(ε_\ _,\barε_{ab})$由粒子与局部化学顺序之间的相对voronoi体积差$ s_ {ab} $确定,这给出了围绕A粒子和vice-vice-vice-vices-vice-vice-vice-vice-neighbor B粒子的平均分数。特别是,移动的Mahalanobis距离$ d_m -d^0_m $与移位的化学顺序$ s_ {ab} -s_ {ab}^0 $折叠到所有直径比的双曲线主曲线上。

The glass-forming ability (GFA) of alloys, colloidal dispersions, and other particulate materials, as measured by the critical cooling rate $R_c$, can span more than ten orders of magnitude. Even after numerous previous studies, the physical features that control the GFA are still not well understood. For example, it is well-known that mixtures are better glass-formers than monodisperse systems and that particle size and cohesive energy differences among constituents improve the GFA, but it is not currently known how particle size differences couple to cohesive energy differences to determine the GFA. We perform molecular dynamics simulations to determine the GFA of equimolar, binary Lennard-Jones (LJ) mixtures versus the normalized cohesive energy difference $ε_\_$ and mixing energy $\bar ε_{AB}$ between particles A and B. We find several important results. First, the $\log_{10} R_c$ contours in the $\bar ε_{AB}$-$ε_\_$ plane are ellipsoidal for all diameter ratios, and thus $R_c$ is determined by the Mahalanobis distance $d_M$ from a given point in the $\bar ε_{AB}$-$ε_\_$ plane to the center of the ellipsoidal contours. Second, LJ systems for which the larger particles have larger cohesive energy are generally better glass formers than those for which the larger particles have smaller cohesive energy. Third, $d_M(ε_\_,\bar ε_{AB})$ is determined by the relative Voronoi volume difference between particles and local chemical order $S_{AB}$, which gives the average fraction of nearest-neighbor B particles surrounding an A particle and vice-versa. In particular, the shifted Mahalanobis distance $d_M - d^0_M$ versus the shifted chemical order $S_{AB}-S_{AB}^0$ collapses onto a hyperbolic master curve for all diameter ratios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源