论文标题

$ n $ -lie保形代数及其相关的无限维$ n $ -lie代数

$n$-Lie conformal algebras and its associated infinite-dimensional $n$-Lie algebras

论文作者

Wang, Mengjun, Luo, Lipeng, Wu, Zhixiang

论文摘要

在本文中,我们将$ \ {λ_{1 \ to to n-1} \} $ - 括号和$ n $ -lie保串代数的分布概念。对于任何$ n $ -lie综合代数$ r $,都存在一系列相关的无限维线性紧凑$ n $ -n $ -lie algebras $ \ {(\ Mathscr {l} ie_p \ mbox \ mbox {} r)我们表明,当且仅当$(\ Mathscr {\ Mathscr {l} ie_p \ mbox {} r)_ \ _ \ _ \ _ \ simeq(\ simeq(\ Mathscr {l} ie__p \ mbox \ mbox \ aboberem)时$ n $ -lie代数带有$ \ partial_ {t_i} $ - 任何$ p \ ge1 $的操作。此外,建立了$ n $ -lie保串代数的代表性和协同学理论。特别是,$ r $的复合物是$ n $ -lie代数$(\ Mathscr {l} ie_p \ mbox {} r)_ \ _ $的子复合物。

In this paper, we introduce a $\{λ_{1\to n-1}\}$-bracket and a distribution notion of an $n$-Lie conformal algebra. For any $n$-Lie conformal algebra $R$, there exists a series of associated infinite-dimensional linearly compact $n$-Lie algebras $\{(\mathscr{L}ie_p\mbox{ }R)_\_\}_{(p\ge1)}$. We show that torsionless finite $n$-Lie conformal algebras $R$ and $S$ are isomorphic if and only if $(\mathscr{L}ie_p\mbox{ }R)_\_\simeq (\mathscr{L}ie_p\mbox{ }S)_\_$ as linearly compact $n$-Lie algebras with $\partial_{t_i}$-action for any $p\ge1$. Moreover, the representation and cohomology theory of $n$-Lie conformal algebras are established. In particular, the complex of $R$ is isomorphic to a subcomplex of $n$-Lie algebra $(\mathscr{L}ie_p\mbox{ }R)_\_$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源