论文标题
使用图像分析来优化FFPE载玻片的DNA产量和肿瘤纯度的AI增强组织病理学综述
AI-augmented histopathologic review using image analysis to optimize DNA yield and tumor purity from FFPE slides
论文作者
论文摘要
为了达到下一代测序(NGS)的最小DNA输入和肿瘤纯度要求,病理学家在视觉上估计宏观解剖和幻灯片计数决策。误容可能会导致组织废物和实验室成本增加。我们开发了一个AI扬声器的智能病理审查系统(SMARTPATH),以使用定量指标来确定组织提取参数。使用数字化的H&E染色FFPE载玻片作为输入,SmartPath段肿瘤,提取基于细胞的特征,并建议宏观解剖区域。为了预测每张载玻片的DNA产量,提取的特征与已知的DNA产量相关。然后,病理学家定义的靶标产量除以预测的DNA产量/载玻片,可以给出刮擦的载玻片数量。模型开发后,在Tempus Labs分子测序实验室内进行了内部验证试验。我们评估了501个临床结直肠癌幻灯片的系统,其中一半接受了SmartPath杰出的评论和一半的传统病理学家评论。 SmartPath队列在所需的100-2000NG目标范围内具有25%的DNA产量。 SmartPath系统建议更少的幻灯片以刮擦大型组织部分,并在这些情况下节省组织。相反,SmartPath建议使用更多的幻灯片刮擦,以刮擦较少组织的样品,有助于防止由于提取产量不足而导致昂贵的重新提取。进行了统计分析以衡量协变量对结果的影响,从而提供了有关如何改善SmartPath未来应用的见解。总体而言,该研究表明,使用SmartPath的AI激发组织病理学审查可以通过优化DNA产量和肿瘤纯度来减少组织废物,测序时间和实验室成本。
To achieve minimum DNA input and tumor purity requirements for next-generation sequencing (NGS), pathologists visually estimate macrodissection and slide count decisions. Misestimation may cause tissue waste and increased laboratory costs. We developed an AI-augmented smart pathology review system (SmartPath) to empower pathologists with quantitative metrics for determining tissue extraction parameters. Using digitized H&E-stained FFPE slides as inputs, SmartPath segments tumors, extracts cell-based features, and suggests macrodissection areas. To predict DNA yield per slide, the extracted features are correlated with known DNA yields. Then, a pathologist-defined target yield divided by the predicted DNA yield/slide gives the number of slides to scrape. Following model development, an internal validation trial was conducted within the Tempus Labs molecular sequencing laboratory. We evaluated our system on 501 clinical colorectal cancer slides, where half received SmartPath-augmented review and half traditional pathologist review. The SmartPath cohort had 25% more DNA yields within a desired target range of 100-2000ng. The SmartPath system recommended fewer slides to scrape for large tissue sections, saving tissue in these cases. Conversely, SmartPath recommended more slides to scrape for samples with scant tissue sections, helping prevent costly re-extraction due to insufficient extraction yield. A statistical analysis was performed to measure the impact of covariates on the results, offering insights on how to improve future applications of SmartPath. Overall, the study demonstrated that AI-augmented histopathologic review using SmartPath could decrease tissue waste, sequencing time, and laboratory costs by optimizing DNA yields and tumor purity.