论文标题

无监督的图像降低:优化模型驱动的深CNN

Unsupervised Image Deraining: Optimization Model Driven Deep CNN

论文作者

Yu, Changfeng, Chang, Yi, Li, Yi, Zhao, Xile, Yan, Luxin

论文摘要

深度卷积神经网络已取得了显着的进展,以删除单图像雨条。但是,大多数数据驱动的学习方法是全面监督或半监督的,在处理真正的降雨时出乎意料的表现下降。这些数据驱动的学习方法是代表性的,但在真正的降雨中概括了贫困。对于模型驱动的无监督优化方法而言,相反的情况是如此。为了克服这些问题,我们提出了一个统一的无监督学习框架,该框架继承了实际去除降雨的概括和代表性。具体而言,我们首先发现了一种简单而重要的领域知识,即定向雨条是各向异性的,而自然清洁图像是各向同性的,并将结构差异提出到优化模型的能量函数中。因此,我们设计了一个优化模型驱动的深CNN,其中优化模型的无监督损失函数在提出的网络上实施,以更好地泛化。此外,网络的体系结构模仿具有更好特征表示的优化模型的主要作用。一方面,我们利用深层网络来改善表示形式。另一方面,我们利用优化模型的无监督损失进行更好的概括。总体而言,无监督的学习框架实现了良好的概括和表示形式:只有几个真实的下雨图像(输入)和物理意义网络(体系结构),无监督的培训(损失)。关于合成和现实世界雨数据集的广泛实验表明了该方法的优越性。

The deep convolutional neural network has achieved significant progress for single image rain streak removal. However, most of the data-driven learning methods are full-supervised or semi-supervised, unexpectedly suffering from significant performance drops when dealing with real rain. These data-driven learning methods are representative yet generalize poor for real rain. The opposite holds true for the model-driven unsupervised optimization methods. To overcome these problems, we propose a unified unsupervised learning framework which inherits the generalization and representation merits for real rain removal. Specifically, we first discover a simple yet important domain knowledge that directional rain streak is anisotropic while the natural clean image is isotropic, and formulate the structural discrepancy into the energy function of the optimization model. Consequently, we design an optimization model-driven deep CNN in which the unsupervised loss function of the optimization model is enforced on the proposed network for better generalization. In addition, the architecture of the network mimics the main role of the optimization models with better feature representation. On one hand, we take advantage of the deep network to improve the representation. On the other hand, we utilize the unsupervised loss of the optimization model for better generalization. Overall, the unsupervised learning framework achieves good generalization and representation: unsupervised training (loss) with only a few real rainy images (input) and physical meaning network (architecture). Extensive experiments on synthetic and real-world rain datasets show the superiority of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源