论文标题

建议作为语言处理(RLP):一个统一的预处理,个性化的提示和预测范式(P5)

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

论文作者

Geng, Shijie, Liu, Shuchang, Fu, Zuohui, Ge, Yingqiang, Zhang, Yongfeng

论文摘要

长期以来,不同的建议任务通常需要设计特定于任务的架构和培训目标。结果,很难将学习的知识和表示从一个任务转移到另一个任务,从而限制了现有建议方法的概括能力,例如,很难将顺序推荐模型应用或传输到审核生成方法。为了解决此类问题,考虑到语言几乎可以描述任何内容,语言基础是表示各种问题或任务的强大媒介,我们提出了一种灵活的,统一的文本对文本范式,称为“预处理,个性化提示和预测范式”(P5)(P5)(p5),以便在共享框架中统一各种建议任务。在P5中,将所有数据(例如用户项目交互,用户描述,项目元数据和用户评论)转换为通用格式 - 自然语言序列。来自自然语言的丰富信息有助于P5捕获更深层的语义,以进行个性化和建议。具体而言,P5在预处理过程中以相同的语言建模目标学习不同的任务。因此,它是各种下游建议任务的基础模型,可以轻松地与其他模式集成,并根据提示启用基于指导的建议。 P5将推荐系统从浅层模型到深模型到大型模型,并将彻底改变推荐系统的技术形式,从而朝着通用推荐引擎。借助对不同用户的自适应个性化提示,P5能够以零拍或几种方式进行预测,并在很大程度上减少了进行大量微调的必要性。在几个建议基准中,我们进行实验以显示P5的有效性。我们在https://github.com/jeykigung/p5上发布源代码。

For a long time, different recommendation tasks typically require designing task-specific architectures and training objectives. As a result, it is hard to transfer the learned knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches, e.g., a sequential recommendation model can hardly be applied or transferred to a review generation method. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format -- natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation based on prompts. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several recommendation benchmarks, we conduct experiments to show the effectiveness of P5. We release the source code at https://github.com/jeykigung/P5.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源