论文标题

电荷密度波材料中时间分辨光发射的理论描述长达很长时间

Theoretical description of time-resolved photoemission in charge-density-wave materials out to long times

论文作者

Petrovic, Marko D., Weber, Manuel, Freericks, James K.

论文摘要

我们使用经典的蒙特卡洛方法来确定对大型泵场的非平衡响应的经典蒙特卡洛方法,以半经典的方式描述了耦合的电子音波系统 - 对电子的Ehrenfest动力学和量子力学。半古典方法非常准确,因为声子对平均能量的兴奋比声子频率高得多,从而消除了对量子描述的需求。这种方法的数值效率使我们能够执行自洽的时间演变,直到很长时间(数十比索),从而使我们能够建模电荷密度波(CDW)材料的泵浦探针实验。我们的系统是一个半填充的一维(1D)荷斯坦链,由于PEIERLS过渡而表现出CDW排序。该链受到时间依赖的电磁泵场进行,该电磁泵场从平衡中激发它,然后在时间延迟后施加第二个探针脉冲。通过将系统发展到很长时间,我们由于电子和晶格之间的能量交换而捕获了晶格激发的完整过程,并随后放松到新的平衡过程,从而在有限温度下导致晶格松弛。由于泵场驾驶电子驾驶,我们采用了泵脉冲的间接(冲动)驱动机制。我们确定了两个驾驶方式,其中泵可能会引起小扰动或完全扭转初始CDW顺序。我们的工作成功地描述了CDW系统中长期以来一直在实验中看到的振幅模式的响应,但从未通过微观理论成功解释。

We describe coupled electron-phonon systems semiclassically - Ehrenfest dynamics for the phonons and quantum mechanics for the electrons - using a classical Monte Carlo approach that determines the nonequilibrium response to a large pump field. The semiclassical approach is quite accurate, because the phonons are excited to average energies much higher than the phonon frequency, eliminating the need for a quantum description. The numerical efficiency of this method allows us to perform a self-consistent time evolution out to very long times (tens of picoseconds) enabling us to model pump-probe experiments of a charge density wave (CDW) material. Our system is a half-filled, one-dimensional (1D) Holstein chain that exhibits CDW ordering due to a Peierls transition. The chain is subjected to a time-dependent electromagnetic pump field that excites it out of equilibrium, and then a second probe pulse is applied after a time delay. By evolving the system to long times, we capture the complete process of lattice excitation and subsequent relaxation to a new equilibrium, due to an exchange of energy between the electrons and the lattice, leading to lattice relaxation at finite temperatures. We employ an indirect (impulsive) driving mechanism of the lattice by the pump pulse due to the driving of the electrons by the pump field. We identify two driving regimes, where the pump can either cause small perturbations or completely invert the initial CDW order. Our work successfully describes the ringing of the amplitude mode in CDW systems that has long been seen in experiment, but never successfully explained by microscopic theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源