论文标题
由Orbifold的阶点3,第一部分:散射图产生的柔和代数
Gentle algebras arising from surfaces with orbifold points of order 3, Part I: scattering diagrams
论文作者
论文摘要
对于任何表面的每个三角剖分,在边界和Orbifold的第三点上都有明显的点,我们将箭量(循环)与电势相关联,其雅各布式代数是有限的尺寸和柔和的。我们研究了这种温和代数的稳定性散射图,并使用它们来证明Caldero-chapoton地图定义了可及的$τ$ - rigid对与与契克霍夫和shapiro相关的广义群集代数的群集群群的群群之间的培养。
To each triangulation of any surface with marked points on the boundary and orbifold points of order three, we associate a quiver (with loops) with potential whose Jacobian algebra is finite dimensional and gentle. We study the stability scattering diagrams of such gentle algebras and use them to prove that the Caldero--Chapoton map defines a bijection between reachable $τ$-rigid pairs and cluster monomials of the generalized cluster algebra associated to the surface by Chekhov and Shapiro.