论文标题

驱动器和细分市场:通过跨模式蒸馏的城市场景无监督的语义分割

Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation

论文作者

Vobecky, Antonin, Hurych, David, Siméoni, Oriane, Gidaris, Spyros, Bursuc, Andrei, Pérez, Patrick, Sivic, Josef

论文摘要

这项工作调查了在城市场景中学习像素的语义图像细分,而无需任何手动注释,这是从配备了摄像头和激光雷达传感器的汽车收集的原始未策划数据,这些数据在城市周围行驶。我们的贡献是三倍。首先,我们提出了一种新的方法,用于通过利用同步激光雷达和图像数据来进行跨模式的语义图像分割学习。我们方法的关键成分是使用对象提案模块,该模块分析了LIDAR点云以获取空间一致对象的建议。其次,我们表明这些3D对象建议可以与输入图像对齐,并可靠地聚集在语义上有意义的伪级中。最后,我们开发了一种跨模式蒸馏方法,该方法利用所得的伪级部分注释的图像数据来训练基于变压器的模型以进行图像语义分割。我们通过在四个不同的测试数据集(CityScapes,Dark Zurich,Night Time Driving和ACDC)上测试我们方法的概括能力,而无需进行任何填充,并且与此问题的当前状态相比,它显示出显着改善。有关代码等等,请参见project网页https://vobecant.github.io/driveandsegment/。

This work investigates learning pixel-wise semantic image segmentation in urban scenes without any manual annotation, just from the raw non-curated data collected by cars which, equipped with cameras and LiDAR sensors, drive around a city. Our contributions are threefold. First, we propose a novel method for cross-modal unsupervised learning of semantic image segmentation by leveraging synchronized LiDAR and image data. The key ingredient of our method is the use of an object proposal module that analyzes the LiDAR point cloud to obtain proposals for spatially consistent objects. Second, we show that these 3D object proposals can be aligned with the input images and reliably clustered into semantically meaningful pseudo-classes. Finally, we develop a cross-modal distillation approach that leverages image data partially annotated with the resulting pseudo-classes to train a transformer-based model for image semantic segmentation. We show the generalization capabilities of our method by testing on four different testing datasets (Cityscapes, Dark Zurich, Nighttime Driving and ACDC) without any finetuning, and demonstrate significant improvements compared to the current state of the art on this problem. See project webpage https://vobecant.github.io/DriveAndSegment/ for the code and more.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源