论文标题
POMDP的有限状态控制器的感应合成
Inductive Synthesis of Finite-State Controllers for POMDPs
论文作者
论文摘要
我们提出了一个新颖的学习框架,以获取有限状态控制器(FSC),以部分可观察到的马尔可夫决策过程,并说明其对无限期 - 摩尼斯规格的适用性。我们的框架建立在Oracle指导的电感合成的基础上,以探索一个紧凑的设计空间,代表可用的FSC。电感合成方法由两个阶段组成:外阶段决定了设计空间,即FSC候选者的集合,而内部阶段则有效地探索了设计空间。与现有方法相比,该框架很容易普及,并显示出令人鼓舞的结果。实验表明,我们的技术(i)与基于信念的最先进的方法具有无限性特性的竞争力,(ii)产生的FSC比现有方法的FSC较小,并且(iii)自然处理多目标规范。
We present a novel learning framework to obtain finite-state controllers (FSCs) for partially observable Markov decision processes and illustrate its applicability for indefinite-horizon specifications. Our framework builds on oracle-guided inductive synthesis to explore a design space compactly representing available FSCs. The inductive synthesis approach consists of two stages: The outer stage determines the design space, i.e., the set of FSC candidates, while the inner stage efficiently explores the design space. This framework is easily generalisable and shows promising results when compared to existing approaches. Experiments indicate that our technique is (i) competitive to state-of-the-art belief-based approaches for indefinite-horizon properties, (ii) yields smaller FSCs than existing methods for several models, and (iii) naturally treats multi-objective specifications.