论文标题
通过预先训练模型通过相互信息正则化的域概括
Domain Generalization by Mutual-Information Regularization with Pre-trained Models
论文作者
论文摘要
域的概括(DG)旨在仅使用有限的源域学习一个通用模型。由于训练和测试域之间的显着域移动,因此先前的DG尝试仅从源域中学习域不变表示。取而代之的是,我们使用Oracle模型使用共同信息重新构建了DG目标,该模型被推广到任何可能的域。我们通过通过预训练的模型近似oracle模型来得出可拖动的变化下限,称为使用Oracle(Miro)的互信息正则化。我们的广泛实验表明,米罗大大改善了分布的性能。此外,我们的缩放实验表明,预训练模型的尺度越大,Miro的性能提高就越大。源代码可在https://github.com/kakaobrain/miro中找到。
Domain generalization (DG) aims to learn a generalized model to an unseen target domain using only limited source domains. Previous attempts to DG fail to learn domain-invariant representations only from the source domains due to the significant domain shifts between training and test domains. Instead, we re-formulate the DG objective using mutual information with the oracle model, a model generalized to any possible domain. We derive a tractable variational lower bound via approximating the oracle model by a pre-trained model, called Mutual Information Regularization with Oracle (MIRO). Our extensive experiments show that MIRO significantly improves the out-of-distribution performance. Furthermore, our scaling experiments show that the larger the scale of the pre-trained model, the greater the performance improvement of MIRO. Source code is available at https://github.com/kakaobrain/miro.