论文标题
NACS超速散射和光谱的相互作用潜力
Interaction potential for NaCs for ultracold scattering and spectroscopy
论文作者
论文摘要
我们通过在光学镊子中进行实验,从而获得NAC的相互作用潜力。电势的中心区域已从较高温度下的傅立叶变换光谱准确确定,因此我们专注于调整远距离和短距离部分。我们使用结合能和波函数的耦合通道计算来理解在超低光谱学中观察到的分子状态的性质,以及导致用于产生超级NACS分子的Feshbach共振的状态。我们阐明了相互作用电位的实验数量和特征之间的关系。我们建立了确定电势特定特征的实验量的组合。我们发现,必须将远程色散系数$ C_6 $增加约0.9%,至3256(1)$ e_ \ textrm {h} a_0^6 $,以适合实验结果。我们在最终潜力上使用耦合通道计算,以预测结合状态的能量和共振位置。
We obtain the interaction potential for NaCs by fitting to experiments on ultracold scattering and spectroscopy in optical tweezers. The central region of the potential has been accurately determined from Fourier-Transform spectroscopy at higher temperatures, so we focus on adjusting the long-range and short-range parts. We use coupled-channel calculations of binding energies and wave functions to understand the nature of the molecular states observed in ultracold spectroscopy, and of the state that causes the Feshbach resonance used to create ultracold NaCs molecules. We elucidate the relationships between the experimental quantities and features of the interaction potential. We establish the combinations of experimental quantities that determine particular features of the potential. We find that the long-range dispersion coefficient $C_6$ must be increased by about 0.9% to 3256(1) $E_\textrm{h} a_0^6$ to fit the experimental results. We use coupled-channel calculations on the final potential to predict bound-state energies and resonance positions.