论文标题
理性的纠缠替换和结浮子同源性
Rational tangle replacements and knot Floer homology
论文作者
论文摘要
从链接$ k $的链接浮子综合体中,我们提取了$ k $的理性解开数量的下限$ t_q'(k)$(即解开$ k $所需的最小理性替换次数)。此外,我们表明扭转阻塞$ t_q(k)= \ hat {t}(k)$ from Alishahi的论文,作者是适当的理性解开数字的下限。此外,$ t_q(k \ #k')= \ max \ {t_q(k),t_q(k')\} $和$ t'_q(k \ #k')= \ max \ max \ {t'_q(k),t'_q(k'q(k'')\} $。对于圆环结$ k = t_ {p,pk+1} $我们计算$ t'_q(k)= \ lfloor p/2 \ rfloor $和$ t_q(k)= p-1 $。
From the link Floer complex of a link $K$, we extract a lower bound $t_q'(K)$ for the rational unknotting number of $K$ (i.e. the minimum number of rational replacements required to unknot $K$). Moreover, we show that the torsion obstruction $t_q(K)=\hat{t}(K)$ from an earlier paper of Alishahi and the author is a lower bound for the proper rational unknotting number. Moreover, $t_q(K\#K')=\max\{t_q(K),t_q(K')\}$ and $t'_q(K\#K')=\max\{t'_q(K),t'_q(K')\}$. For the torus knot $K=T_{p,pk+1}$ we compute $t'_q(K)=\lfloor p/2\rfloor$ and $t_q(K)=p-1$.