论文标题

数据:领域意识和任务感知的自我监督学习

DATA: Domain-Aware and Task-Aware Self-supervised Learning

论文作者

Chang, Qing, Peng, Junran, Xie, Lingxie, Sun, Jiajun, Yin, Haoran, Tian, Qi, Zhang, Zhaoxiang

论文摘要

通过自我监督学习(SSL)(SSL)和对许多下游任务的填充而无标记的大量数据训练模型的范式已成为最近的趋势。但是,由于高训练成本和下游用法的无意识性,大多数自我监管的学习方法缺乏与下游场景的多样性相对应的能力,因为存在各种数据域,不同的视觉任务和模型的延迟限制。神经体系结构搜索(NAS)是一种普遍认可的征服上述问题的方式,但是在SSL上应用NAS似乎是不可能的,因为没有标签或指标用于评判模型选择。在本文中,我们提出数据,这是一种专门用于SSL的简单而有效的NAS方法,可提供域感知和任务感知的预训练。具体而言,我们(i)训练一个可以被视为一组数百万个网络的超级网,涵盖了无需任何标签的各种模型尺度,(ii)提出了一种与SSL兼容的灵活搜索机制,该机制可以找到不同计算成本的网络,对于各种下游视觉任务和数据域而没有提供明确的计量。我们的方法与MoCO V2实例化,在下游任务(包括图像分类,对象检测和语义分割)上取得了广泛的计算成本的有希望的结果。数据与大多数现有的SSL方法是正交的,并赋予他们在下游需求上自定义的能力。对其他SSL方法的广泛实验证明了该方法的普遍性。代码在https://github.com/gaia-vision/gaia-ssl上发布

The paradigm of training models on massive data without label through self-supervised learning (SSL) and finetuning on many downstream tasks has become a trend recently. However, due to the high training costs and the unconsciousness of downstream usages, most self-supervised learning methods lack the capability to correspond to the diversities of downstream scenarios, as there are various data domains, different vision tasks and latency constraints on models. Neural architecture search (NAS) is one universally acknowledged fashion to conquer the issues above, but applying NAS on SSL seems impossible as there is no label or metric provided for judging model selection. In this paper, we present DATA, a simple yet effective NAS approach specialized for SSL that provides Domain-Aware and Task-Aware pre-training. Specifically, we (i) train a supernet which could be deemed as a set of millions of networks covering a wide range of model scales without any label, (ii) propose a flexible searching mechanism compatible with SSL that enables finding networks of different computation costs, for various downstream vision tasks and data domains without explicit metric provided. Instantiated With MoCo v2, our method achieves promising results across a wide range of computation costs on downstream tasks, including image classification, object detection and semantic segmentation. DATA is orthogonal to most existing SSL methods and endows them the ability of customization on downstream needs. Extensive experiments on other SSL methods demonstrate the generalizability of the proposed method. Code is released at https://github.com/GAIA-vision/GAIA-ssl

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源