论文标题
零像素方向边界通过向量变换
Zero Pixel Directional Boundary by Vector Transform
论文作者
论文摘要
边界是人类和计算机视觉系统使用的主要视觉提示之一。边界检测的关键问题之一是标签表示,这通常会导致类不平衡,因此,厚边界需要稀疏的非差异后处理步骤。在本文中,我们将边界重新解释为1-D表面,并制定一对一的向量变换功能,允许训练边界预测完全避免了类不平衡问题。具体而言,我们在任何点定义边界表示,因为单位向量指向最接近的边界表面。我们的问题表述会导致方向的估计以及边界的更丰富的上下文信息,如果需要的话,在训练时,零像素薄边界的可用性也可用。我们的方法在训练损失中不使用超参数和推断时固定的稳定高参数。我们提供有关向量变换表示的理论理由/讨论。我们使用标准体系结构评估了建议的损失方法,并在几个数据集上的其他损失和表示方面表现出了出色的性能。代码可在https://github.com/edomel/boundaryvt上找到。
Boundaries are among the primary visual cues used by human and computer vision systems. One of the key problems in boundary detection is the label representation, which typically leads to class imbalance and, as a consequence, to thick boundaries that require non-differential post-processing steps to be thinned. In this paper, we re-interpret boundaries as 1-D surfaces and formulate a one-to-one vector transform function that allows for training of boundary prediction completely avoiding the class imbalance issue. Specifically, we define the boundary representation at any point as the unit vector pointing to the closest boundary surface. Our problem formulation leads to the estimation of direction as well as richer contextual information of the boundary, and, if desired, the availability of zero-pixel thin boundaries also at training time. Our method uses no hyper-parameter in the training loss and a fixed stable hyper-parameter at inference. We provide theoretical justification/discussions of the vector transform representation. We evaluate the proposed loss method using a standard architecture and show the excellent performance over other losses and representations on several datasets. Code is available at https://github.com/edomel/BoundaryVT.