论文标题
立方体在有限领域的添加剂分解
Additive decompositions of cubes in finite fields
论文作者
论文摘要
令$ p \ equiv1 \ pmod3 $为素数。我们研究了有关$ p $元素有限字段中所有非零立方体的集合$ c_p $的添加剂分解的几个主题。例如,我们表明,当$ p> 184291 $时,套装$ c_p $没有$ c_p = a+b+c $的分解,带有$ | a |,| b |,| c | \ ge2 $。
Let $p\equiv1\pmod3$ be a prime . We study several topics on additive decompositions concerning the set $C_p$ of all non-zero cubes in the finite field of $p$ elements. For example, we show that when $p>184291$ , the set $C_p$ has no decomposition of the form $C_p=A+B+C$ with $|A|,|B|,|C|\ge2$.