论文标题
使用对比度拆卸学习的不属于不配对的深层图像除去
Unpaired Deep Image Dehazing Using Contrastive Disentanglement Learning
论文作者
论文摘要
我们从一组未配对的清晰和朦胧的图像中提供了实用的基于学习的图像去吊索网络。本文提供了一种新的观点,可以将图像除去作为两类分离的因子分离任务,即清晰图像重建的任务与任务相关的因素以及与雾剂相关的分布的任务含量。为了在深度特征空间中实现这两类因素的解开,将对比度学习引入了一个自行车框架中,以通过指导与潜在因素相关的生成的图像来学习分离的表示形式。通过这种表述,提出的对比度置换的脱掩护方法(CDD-GAN)采用负面发电机与编码器网络合作以交替更新,以产生挑战负面对手的队列。然后,这些负面的对手是端到端训练的,以及骨干代表网络,以增强歧视性信息并通过最大化对抗性对比损失来促进因素分离性能。在培训期间,我们进一步表明,硬性负面例子可以抑制任务 - 无关紧要的因素和未配对的清晰景象可以增强与任务相关的因素,以便更好地促进雾霾去除并帮助图像恢复。对合成和现实世界数据集的广泛实验表明,我们的方法对现有的未配对飞行基线的表现非常有利。
We offer a practical unpaired learning based image dehazing network from an unpaired set of clear and hazy images. This paper provides a new perspective to treat image dehazing as a two-class separated factor disentanglement task, i.e, the task-relevant factor of clear image reconstruction and the task-irrelevant factor of haze-relevant distribution. To achieve the disentanglement of these two-class factors in deep feature space, contrastive learning is introduced into a CycleGAN framework to learn disentangled representations by guiding the generated images to be associated with latent factors. With such formulation, the proposed contrastive disentangled dehazing method (CDD-GAN) employs negative generators to cooperate with the encoder network to update alternately, so as to produce a queue of challenging negative adversaries. Then these negative adversaries are trained end-to-end together with the backbone representation network to enhance the discriminative information and promote factor disentanglement performance by maximizing the adversarial contrastive loss. During the training, we further show that hard negative examples can suppress the task-irrelevant factors and unpaired clear exemples can enhance the task-relevant factors, in order to better facilitate haze removal and help image restoration. Extensive experiments on both synthetic and real-world datasets demonstrate that our method performs favorably against existing unpaired dehazing baselines.