论文标题
星形胶质细胞神经元网络中的新兴动力学通过一氧化氮耦合
Emergent dynamics in an astrocyte-neuronal network coupled via nitric oxide
论文作者
论文摘要
在大脑中,神经元和神经胶质细胞在信息处理过程中相互结合。神经元的刺激会导致星形胶质细胞中的钙振荡,从而影响神经元钙动力学。 “ glissandi”效应就是一种现象,与脱落的降低相关,其中同步的钙振荡在数百个星形胶质细胞中传播为波动。从星形胶质细胞释放的一氧化氮分子在基础的星形胶质细胞 - 神经元相互作用网络的基础上促进了突触功能。在这项研究中,通过将星形胶质细胞神经元(A-N)单位定义为一个神经元和一个星形胶质细胞的整合电路,我们开发了一种神经元刺激依赖性和硝酸氧化物介导的钙波在星形胶质细胞中的最小模型。通过一氧化氮分子结合了单位间通信,开发了1,000个这样的A-N单元的耦合网络,其中发现了多种稳定的稳定状态在星形胶质细胞中出现。我们检查了神经元刺激强度的范围以及A-N单元之间产生这种动态行为的耦合强度。我们还报告存在一系列耦合强度,其中未接受刺激的单元也开始显示振荡并变得同步。我们的结果支持以下假设:星形胶质细胞中表现出同步钙振荡的胶质性现象通过减少过程的能量需求来有助于有效的突触传播。
In the brain, both neurons and glial cells work in conjunction with each other during information processing. Stimulation of neurons can cause calcium oscillations in astrocytes which in turn can affect neuronal calcium dynamics. The "glissandi" effect is one such phenomenon, associated with a decrease in infraslow fluctuations, in which synchronized calcium oscillations propagate as a wave in hundreds of astrocytes. Nitric oxide molecules released from the astrocytes contribute to synaptic functions on the basis of the underlying astrocyte-neuron interaction network. In this study, by defining an astrocyte-neuronal (A-N) unit as an integrated circuit of one neuron and one astrocyte, we developed a minimal model of neuronal stimulus-dependent and nitric oxide-mediated emergence of calcium waves in astrocytes. Incorporating inter-unit communication via nitric oxide molecules, a coupled network of 1,000 such A-N units is developed in which multiple stable regimes were found to emerge in astrocytes. We examined the ranges of neuronal stimulus strength and the coupling strength between A-N units that give rise to such dynamical behaviors. We also report that there exists a range of coupling strength, wherein units not receiving stimulus also start showing oscillations and become synchronized. Our results support the hypothesis that glissandi-like phenomena exhibiting synchronized calcium oscillations in astrocytes help in efficient synaptic transmission by reducing the energy demand of the process.