论文标题

使用深度学习检测超宽场底面图像中多种视网膜疾病:相关区域的数据驱动识别

Detection of multiple retinal diseases in ultra-widefield fundus images using deep learning: data-driven identification of relevant regions

论文作者

Engelmann, Justin, McTrusty, Alice D., MacCormick, Ian J. C., Pead, Emma, Storkey, Amos, Bernabeu, Miguel O.

论文摘要

Ultra Widefield(UWF)成像是一种有前途的方式,与传统的眼底摄影相比,它捕获了更大的视网膜视野。先前的研究表明,深度学习(DL)模型可有效检测UWF图像中的视网膜疾病,但主要在不现实的情况下考虑个人疾病(排除具有其他疾病,人工制品,合并症或边缘性案例的图像,以及健康和疾病的图像),并且没有系统地研究哪些地区的疾病与UWF图像相关。我们首先提出一个可以在更现实的条件下识别多种视网膜疾病的DL模型来改善该领域的状态。然后,我们使用全局解释性方法来确定该模型通常参与的UWF图像的哪些区域。我们的模型表现良好,在内部测试集的曲线(AUC)下方的健康视网膜和患病视网膜之间分开,而在具有挑战性的外部测试集中,AUC为0.9841。在诊断特定疾病时,该模型会参与我们期望这些疾病发生的区域。我们进一步以纯粹数据驱动的方式将后极确定为最重要的区域。令人惊讶的是,后杆周围的10%的图像足以达到可与完整图像相当的性能。

Ultra-widefield (UWF) imaging is a promising modality that captures a larger retinal field of view compared to traditional fundus photography. Previous studies showed that deep learning (DL) models are effective for detecting retinal disease in UWF images, but primarily considered individual diseases under less-than-realistic conditions (excluding images with other diseases, artefacts, comorbidities, or borderline cases; and balancing healthy and diseased images) and did not systematically investigate which regions of the UWF images are relevant for disease detection. We first improve on the state of the field by proposing a DL model that can recognise multiple retinal diseases under more realistic conditions. We then use global explainability methods to identify which regions of the UWF images the model generally attends to. Our model performs very well, separating between healthy and diseased retinas with an area under the curve (AUC) of 0.9206 on an internal test set, and an AUC of 0.9841 on a challenging, external test set. When diagnosing specific diseases, the model attends to regions where we would expect those diseases to occur. We further identify the posterior pole as the most important region in a purely data-driven fashion. Surprisingly, 10% of the image around the posterior pole is sufficient for achieving comparable performance to having the full images available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源