论文标题

考虑到电力系统的共振,时间变化的非线性参与因素

Time-variant Nonlinear Participation Factors Considering Resonances in Power Systems

论文作者

Xia, Tianwei, Sun, Kai

论文摘要

参与因子(PF)是小信号稳定性的重要模态特性,评估了状态变量和模式之间的联系。应用正常形式理论,可以定义非线性PF,以评估状态变量在大型干扰之后的模态动力学中的参与,从而考虑到共鸣和非线性达到所需顺序。但是,当大型干扰后的非线性动力学衰减时,现有的非线性PF与常规线性PF不一致,并且线性模态动力学成为主导。本文通过引入时间衰减因子和非线性模式的定义提出了时间变化的非线性PF。当系统状态变得接近其平衡时,新的PFS考虑共振模式及其值自然过渡到线性PF。对两个面积四方系统的案例研究表明,新的PF可以通过参与自然和共振的非线性振荡模式来正确对发电机进行对,但会受到大干扰。

The participation factor (PF), as an important modal property for small-signal stability, evaluates the linkage between a state variable and a mode. Applying the normal form theory, a nonlinear PF can be defined to evaluate the participation of a state variable into modal dynamics following a large disturbance, that gives considerations to resonances and nonlinearities up to a desired order. However, existing nonlinear PFs are inconsistent with the conventional linear PF when nonlinear dynamics following a large disturbance attenuate and linear modal dynamics become dominating. This paper proposes a time-variant nonlinear PF by introducing a time decaying factor and the definition of a nonlinear mode. The new PFs consider modes of resonances and their values naturally transition to a linear PF when the system state becomes close to its equilibrium. The case study on a two-area four-generator system shows that the new PF can correctly rank generators by their participations in natural and resonance modes of nonlinear oscillation subject to a large disturbance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源