论文标题
关于有限反射组的作用下不变多项式的复杂性
On the complexity of invariant polynomials under the action of finite reflection groups
论文作者
论文摘要
令$ \ mathbb {k} [x_1,\ dots,x_n] $是字段上的多元多项式环$ \ mathbb {k} $。令$(u_1,\ dots,u_n)$为$ n $代数独立元素的序列,$ \ mathbb {k} [x_1,\ dots,x_n] $。给定一个多项式$ f $ in $ \ mathbb {k} [u_1,\ dots,u_n] $,$ \ mathbb {k} [x_1,\ dots,x_n] $的子来源是$ u_i $'s生成$ \ mathbb {k} [e_1,\ dots,e_n] $,其中$ e_1,\ dots,e_n $是新变量,使得$ f _ {\ mathrm {new}}}(u_1,u_1,\ dots,dots,dots,u_n)= f(x_1,\ _1,\ dots,x__n)$。我们提供算法并分析其算术复杂性,以计算$ f _ {\ mathrm {new}} $知道$ f $和$(u_1,\ dots,u_n)$。
Let $\mathbb{K}[x_1, \dots, x_n]$ be a multivariate polynomial ring over a field $\mathbb{K}$. Let $(u_1, \dots, u_n)$ be a sequence of $n$ algebraically independent elements in $\mathbb{K}[x_1, \dots, x_n]$. Given a polynomial $f$ in $\mathbb{K}[u_1, \dots, u_n]$, a subring of $\mathbb{K}[x_1, \dots, x_n]$ generated by the $u_i$'s, we are interested infinding the unique polynomial $f_{\rm new}$ in $\mathbb{K}[e_1,\dots, e_n]$, where $e_1, \dots, e_n$ are new variables, such that $f_{\mathrm{new}}(u_1, \dots, u_n) = f(x_1, \dots, x_n)$. We provide an algorithm and analyze its arithmetic complexity to compute $f_{\mathrm{new}}$ knowing $f$ and $(u_1, \dots, u_n)$.