论文标题

Einstein $ SU(N)$ - Yang-Mills理论中的分析Meronic黑洞,引诱孤子和更高的旋转

Analytic meronic black holes, gravitating solitons and higher spins in the Einstein $SU(N)$-Yang-Mills theory

论文作者

Canfora, Fabrizio, Gomberoff, Andrés, Lagos, Marcela, Vera, Aldo

论文摘要

我们在爱因斯坦$ su(n)$ - Yang-Mills理论中构建Meronic黑洞和孤子,$ d = 4 $和$ d = 5 $尺寸。通过将广义的刺猬Ansatz与$ SU(N)$组的Euler参数化相结合,可以从中找到这些分析解决方案,从中可以自动满足Yang-Mills方程的所有值$ N $,而Einstein方程则可以分析求解。我们明确地表明了颜色数$ n $在黑洞热力学以及Isospin效应的重力旋转中发挥作用的作用。我们分析的两个显着结果是,首先,通过观察isospin效应的旋转(后者不存在,但在前者中)可以通过彩色黑洞来区分。其次,使用$ su(n)$的非固定的Ansatz理论,以及来自Isospin效应的旋转,可以从量规组下收到的标量磁场中建立任意高旋转的领域。因此,可以分析渐近平坦的空间时间中的较高自旋场,而不会“用手引入”更高的自旋场。我们的分析还揭示了从$ d = 4 $中的isospin效应和$ d = 5 $的旋转之间的有趣区别。

We construct meronic black holes and solitons in the Einstein $SU(N)$-Yang-Mills theory in $D=4$ and $D=5$ dimensions. These analytical solutions are found by combining the generalized hedgehog ansatz with the Euler parameterization of the $SU(N)$ group from which the Yang-Mills equations are automatically satisfied for all values of $N$ while the Einstein equations can be solved analytically. We explicitly show the role that the color number $N$ plays in the black hole thermodynamics as well as in the gravitational spin from isospin effect. Two remarkable results of our analysis are that, firstly, meronic black holes can be distinguished by colored black holes by looking at the spin from isospin effect (which is absent in the latter but present in the former). Secondly, using the theory of non-embedded ansatz for $SU(N)$ together with the spin from isospin effect, one can build fields of arbitrary high spin out of scalar fields charged under the gauge group. Hence, one can analyze interacting higher spin fields in asymptotically flat space-times without "introducing by hand" higher spin fields. Our analysis also discloses an interesting difference between the spin from isospin effect in $D=4$ and in $D=5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源