论文标题

Sasaki-Icci流在Sasakian 5个术中的一般类型上的融合

Convergence of the Sasaki-Ricci flow on Sasakian 5-manifolds of general type

论文作者

Chang, Shu-Cheng, Han, Yingbo, Lin, Chien, Wu, Chin-Tung

论文摘要

在本文中,我们表明沿Sasaki-ricci流的横向曲率曲率的均匀l^{4} - 结合在紧凑的Quasi-Quasi-gular Sasakian(2N+1) - 术类型m上。作为一种应用,在cheeger-gromov中,标准化的sasaki-ricci流的任何解决方案都会收敛到横向规范模型m_ {can} m n n n h n h n h hig and vans n histry My histry histry M少,而M_ {can尤其是M_ {can can^cae s^e s^n s s^{1} {1} -orbif nif n n。表面(z_ {can},ω_{ke})带有有限点orbifold奇异性。随着T的无限,Sasaki-Icci的流量将通过sasaki-ricci的流量将浮叶(-2) - 库归于Orbifold点。

In this paper, we show that the uniform L^{4}-bound of the transverse Ricci curvature along the Sasaki-Ricci flow on a compact quasi-regular Sasakian (2n+1)-manifold M of general type. As an application, any solution of the normalized Sasaki-Ricci flow converges in the Cheeger-Gromov sense to the unique singular Sasaki η-Einstein metric on the transverse canonical model M_{can} of M if n is less than or equal to 3. In particular for n equal to 2, M_{can} is a S^{1}-orbibundle over the unique Keahler-Einstein orbifold surface (Z_{can},ω_{KE}) with finite point orbifold singularities. The floating foliation (-2)-curves in M will be contracted to orbifold points by the Sasaki-Ricci flow as t goes to infinite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源