论文标题

ERF:从头开始重建明确的辐射场

ERF: Explicit Radiance Field Reconstruction From Scratch

论文作者

Aroudj, Samir, Lovegrove, Steven, Ilg, Eddy, Schmidt, Tanner, Goesele, Michael, Newcombe, Richard

论文摘要

我们提出了一种新型的显式3D重建方法,该方法处理具有传感器姿势和校准场景的一组图像,并估算一个光真实的数字模型。关键创新之一是,与基于神经网络(隐性)替代方案相比,基本的体积表示完全是明确的。我们使用对场景几何形状及其传出的表面辐射的清晰且可理解的优化变量映射明确编码场景。我们使用存储在稀疏体素OCTREE中的分层体积字段表示它们。仅来自注册场景图像的数百万个未知变量的体积场景模型可靠地重构是一个高度非凸和复杂的优化问题。为此,我们采用了随机梯度下降(ADAM),该下降是由逆微分渲染器指导的。 我们证明我们的方法可以重建与最新隐式方法相媲美的高质量模型。重要的是,我们不使用顺序重建管道,即单个步骤从以前的阶段中遭受不完整或不可靠的信息,而是从统一的初始解决方案开始我们的优化,并以远离地面真理的场景几何形状和光芒辐射开始。我们表明我们的方法是一般和实用的。它不需要高度控制的实验室设置来捕获,而是允许重建各种各样的场景,包括具有挑战性的物体,例如室外植物或毛茸茸的玩具。最后,由于其明确的设计,我们重建的场景模型具有多功能性。它们可以交互作用,这在计算上对于隐式替代方案来说太昂贵了。

We propose a novel explicit dense 3D reconstruction approach that processes a set of images of a scene with sensor poses and calibrations and estimates a photo-real digital model. One of the key innovations is that the underlying volumetric representation is completely explicit in contrast to neural network-based (implicit) alternatives. We encode scenes explicitly using clear and understandable mappings of optimization variables to scene geometry and their outgoing surface radiance. We represent them using hierarchical volumetric fields stored in a sparse voxel octree. Robustly reconstructing such a volumetric scene model with millions of unknown variables from registered scene images only is a highly non-convex and complex optimization problem. To this end, we employ stochastic gradient descent (Adam) which is steered by an inverse differentiable renderer. We demonstrate that our method can reconstruct models of high quality that are comparable to state-of-the-art implicit methods. Importantly, we do not use a sequential reconstruction pipeline where individual steps suffer from incomplete or unreliable information from previous stages, but start our optimizations from uniformed initial solutions with scene geometry and radiance that is far off from the ground truth. We show that our method is general and practical. It does not require a highly controlled lab setup for capturing, but allows for reconstructing scenes with a vast variety of objects, including challenging ones, such as outdoor plants or furry toys. Finally, our reconstructed scene models are versatile thanks to their explicit design. They can be edited interactively which is computationally too costly for implicit alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源