论文标题
普遍的Oppenheimer-Snyder重力崩溃成常规黑洞
Generalized Oppenheimer-Snyder Gravitational Collapse into Regular Black holes
论文作者
论文摘要
我们将研究从大恒星的重力崩溃中形成特定的常规黑洞。内部几何形状由空间平坦的弗里德曼·罗伯逊 - 沃克指标描述,恒星物质的分布均匀分布,而没有任何关于其状态方程的预先提高。我们的模型是对普通黑洞的Oppenheimer-Snyder崩溃的概括。我们通过在恒星自由下降表面上施加平滑度量的条件,从而获得了恒星的密度和压力。将常规的黑洞指定为海沃德和Bardeen案例,我们看到恒星物质是通过状态的多粒子方程来描述的,而且对于小于一定值的半径而言,强的能量条件变得无效。然后,对于两个黑洞,内部明显和事件范围以及恒星表面作为恒星的适当时间的功能获得。最后,我们建造了一个新的两个常规黑洞的参数家族,该家族与具有任意索引的多粒子恒星的扁平弗里德曼·罗伯逊 - 罗伯逊 - 罗伯逊 - 罗伯逊 - 步行者内部度量。
We shall study the formation of a particular class of regular black holes from the gravitational collapse of a massive star. The inside geometry is described by spatially flat Friedmann-Robertson-Walker metric and the stellar matter is distributed uniformly without any pre-assumption about its equation of state. Our model is a generalization of Oppenheimer-Snyder collapse for regular black holes. We have obtained the density and pressure of star by applying the condition of smooth joining of metrics at the freely falling surface of star. Specifying the regular black holes to Hayward and Bardeen cases, we see that the stellar matter is described by a polytropic equation of state and moreover, for the radius smaller than a certain value, the strong energy condition becomes invalid. Then for both black holes, the interior apparent and event horizons and also the stellar surface are obtained as functions of the proper time of star. At the end, we have constructed a new two parametric family of regular black holes jointed smoothly to the flat Friedmann-Robertson-Walker interior metric of a polytropic star with an arbitrary index.