论文标题

CQELS 2.0:迈向语义流融合的统一框架

CQELS 2.0: Towards A Unified Framework for Semantic Stream Fusion

论文作者

Le-Tuan, Anh, Nguyen-Duc, Manh, Le, Chien-Quang, Tran, Trung-Kien, Hauswirth, Manfred, Eiter, Thomas, Le-Phuoc, Danh

论文摘要

我们提出CQELS 2.0,这是链接流对连续查询评估的第二版。 CQELS 2.0是一个平台不合时宜的联合执行框架,用于语义流融合。在此版本中,我们引入了一种新型的神经符号流推理组件,该组件可以通过具有可学习的概率学位作为权重的逻辑规则指定基于深神经网络(DNN)的数据融合管道。作为一个平台 - 不合时宜的框架,可以为具有不同硬件体系结构的设备(从嵌入式设备到云基础架构)实现CQELS 2.0。此外,此版本还包括一个自适应联合会,该自适应联合会允许网络中不同节点上的CQELS实例协调其资源,以通过订阅连续查询将部分工作负载委派给同行,以分发处理管道。

We present CQELS 2.0, the second version of Continuous Query Evaluation over Linked Streams. CQELS 2.0 is a platform-agnostic federated execution framework towards semantic stream fusion. In this version, we introduce a novel neural-symbolic stream reasoning component that enables specifying deep neural network (DNN) based data fusion pipelines via logic rules with learnable probabilistic degrees as weights. As a platform-agnostic framework, CQELS 2.0 can be implemented for devices with different hardware architectures (from embedded devices to cloud infrastructures). Moreover, this version also includes an adaptive federator that allows CQELS instances on different nodes in a network to coordinate their resources to distribute processing pipelines by delegating partial workloads to their peers via subscribing continuous queries

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源