论文标题

双激素人造胰腺的非线性模型预测控制和系统识别

Nonlinear Model Predictive Control and System Identification for a Dual-hormone Artificial Pancreas

论文作者

Reenberg, Asbjørn Thode, Ritschel, Tobias K. S., Lindkvist, Emilie B., Laugesen, Christian, Svensson, Jannet, Ranjan, Ajenthen G., Nørgaard, Kirsten, Jørgensen, John Bagterp

论文摘要

在这项工作中,我们提出了双激素人工胰腺(AP)的开关非线性模型预测控制(NMPC)算法,并使用最大可能性估计(MLE)来识别模型参数。双激素AP由连续的葡萄糖监测器(CGM),对照算法,胰岛素泵和胰高血糖素泵组成。 AP的设计具有启发式,可在胰岛素和胰高血糖素之间切换以及依赖状态的约束。我们将现有的葡萄糖调节模型与胰高血糖素和锻炼进行模拟,并使用更简单的模型进行控制。我们使用在50种1型糖尿病的虚拟人中使用计算机数值模拟中测试AP(NMPC和MLE)。根据模拟模型生成的数据,为每个虚拟人员确定了该系统。模拟显示范围(3.9-10 mmol/L)的平均时间为89.3%,没有降血糖事件。

In this work, we present a switching nonlinear model predictive control (NMPC) algorithm for a dual-hormone artificial pancreas (AP), and we use maximum likelihood estimation (MLE) to identify model parameters. A dual-hormone AP consists of a continuous glucose monitor (CGM), a control algorithm, an insulin pump, and a glucagon pump. The AP is designed with a heuristic to switch between insulin and glucagon as well as state-dependent constraints. We extend an existing glucoregulatory model with glucagon and exercise for simulation, and we use a simpler model for control. We test the AP (NMPC and MLE) using in silico numerical simulations on 50 virtual people with type 1 diabetes. The system is identified for each virtual person based on data generated with the simulation model. The simulations show a mean of 89.3% time in range (3.9-10 mmol/L) and no hypoglycemic events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源