论文标题

用于分类的功能混合物

Functional mixture-of-experts for classification

论文作者

Pham, Nhat Thien, Chamroukhi, Faicel

论文摘要

我们开发出一种混合物(ME)方法,以进行多类分类,其中预测因子是单变量函数。它由一个ME模型组成,在该模型中,门控网络和专家网络都是在具有功能输入的多项式logistic激活函数上构建的。我们执行正规化的最大似然估计,其中系数函数在靶向导数上享有可解释的稀疏性约束。我们开发了像EM-LASSO这样的算法来计算正则化MLE并评估模拟和真实数据的建议方法。

We develop a mixtures-of-experts (ME) approach to the multiclass classification where the predictors are univariate functions. It consists of a ME model in which both the gating network and the experts network are constructed upon multinomial logistic activation functions with functional inputs. We perform a regularized maximum likelihood estimation in which the coefficient functions enjoy interpretable sparsity constraints on targeted derivatives. We develop an EM-Lasso like algorithm to compute the regularized MLE and evaluate the proposed approach on simulated and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源