论文标题

代数组和谎言组的统一界限

Uniform boundedness for algebraic groups and Lie groups

论文作者

Kędra, Jarek, Libman, Assaf, Martin, Ben

论文摘要

让$ g $为field $ k $上的一个半imple线性代数群,让$ g^+(k)$是子组$ r_u(q)(q)$生成的子组,其中$ q $范围比所有最小$ k $ k $ k $ - parabolocs $ q $ q的$ q $ q $ q $ g $ g $ g $。我们证明,如果$ g^+(k)$有界,那么它是统一的。在额外的假设下,我们获得了$δ(g^+(k))$的明确界限:我们证明,如果$ k $是代数关闭的,则$Δ(g^+(k))\ leq 4 \,{\ rm strank}} \ $,g $,如果$ g $在$ k $上分配了$ k $,则是$ k $ teq g^+(g^+(k^+(k))等级} \,g $。我们推断出真实和复杂的半圣母谎言组的一些类似结果。

Let $G$ be a semisimple linear algebraic group over a field $k$ and let $G^+(k)$ be the subgroup generated by the subgroups $R_u(Q)(k)$, where $Q$ ranges over all the minimal $k$-parabolic subgroups $Q$ of $G$. We prove that if $G^+(k)$ is bounded then it is uniformly bounded. Under extra assumptions we get explicit bounds for $Δ(G^+(k))$: we prove that if $k$ is algebraically closed then $Δ(G^+(k))\leq 4\, {\rm rank}\,G$, and if $G$ is split over $k$ then $Δ(G^+(k))\leq 28\, {\rm rank}\,G$. We deduce some analogous results for real and complex semisimple Lie groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源