论文标题
自动驾驶车辆具有自适应截短距离功能的大规模3D语义重建
Large-Scale 3D Semantic Reconstruction for Automated Driving Vehicles with Adaptive Truncated Signed Distance Function
论文作者
论文摘要
如今,大规模3D重建,纹理和语义映射已被广泛用于自动驾驶车辆,虚拟现实和自动数据生成。但是,大多数方法都是针对带有颜色致密点云的RGB-D摄像机开发的,并且不适合使用稀疏的LIDAR点云的大规模室外环境。由于通常可以从具有不同视图姿势的多个相机图像中观察到3D表面,因此纹理的最佳图像补丁选择和语义映射的最佳语义类估计仍然具有挑战性。 为了解决这些问题,我们建议使用LIDAR和相机传感器进行新颖的3D重建,纹理和语义映射系统。引入了自适应截短的签名距离功能,以隐式地描述表面,该表面可以处理不同的LIDAR点稀疏性并提高模型质量。然后,通过应用最佳图像补丁策略来从一系列注册的相机图像中提取的隐式函数提取的三角形网格图。除此之外,还提出了Markov随机的基于字段的数据融合方法,以估计每个三角网格的最佳语义类别。我们的方法在合成数据集,Kitti数据集和使用实验工具记录的数据集上进行了评估。结果表明,与使用其他最先进的方法相比,使用我们的方法生成的3D模型更为准确。纹理和语义映射也取得了非常有希望的结果。
The Large-scale 3D reconstruction, texturing and semantic mapping are nowadays widely used for automated driving vehicles, virtual reality and automatic data generation. However, most approaches are developed for RGB-D cameras with colored dense point clouds and not suitable for large-scale outdoor environments using sparse LiDAR point clouds. Since a 3D surface can be usually observed from multiple camera images with different view poses, an optimal image patch selection for the texturing and an optimal semantic class estimation for the semantic mapping are still challenging. To address these problems, we propose a novel 3D reconstruction, texturing and semantic mapping system using LiDAR and camera sensors. An Adaptive Truncated Signed Distance Function is introduced to describe surfaces implicitly, which can deal with different LiDAR point sparsities and improve model quality. The from this implicit function extracted triangle mesh map is then textured from a series of registered camera images by applying an optimal image patch selection strategy. Besides that, a Markov Random Field-based data fusion approach is proposed to estimate the optimal semantic class for each triangle mesh. Our approach is evaluated on a synthetic dataset, the KITTI dataset and a dataset recorded with our experimental vehicle. The results show that the 3D models generated using our approach are more accurate in comparison to using other state-of-the-art approaches. The texturing and semantic mapping achieve also very promising results.