论文标题
双曲线图神经网络:方法和应用的综述
Hyperbolic Graph Neural Networks: A Review of Methods and Applications
论文作者
论文摘要
尽管在许多领域中采用了广泛的采用并经过证明的效用,但在欧几里得空间中的图表表示,经常努力有效地捕获现实世界中固有的层次结构和复杂的关系结构,尤其是对于表现出高度非欧成功解剖学或动力法分布的数据集中的数据集。双曲线几何形状具有恒定的负曲率和指数增长特性,自然可容纳这种结构,为学习丰富的图表表示有希望的替代方案。本调查论文对双曲线图(HGL)快速发展的领域进行了全面综述。我们系统地对现有方法进行了系统的分类和分析,将其宽广分为(1)基于双曲线嵌入的技术,(2)基于图形神经网络的双曲线模型和(3)新兴范式。除了方法论之外,我们还广泛讨论了HGL跨多个领域的各种应用,包括推荐系统,知识图,生物信息学和其他相关场景,展示了在现实世界图学习任务中双曲几何的广泛适用性和有效性。最重要的是,我们确定了一些主要的挑战,这些挑战是推进HGL的方向,包括处理复杂的数据结构,开发几何学意识到的学习目标,确保值得信赖和可扩展的实现,并与基础模型(例如大型语言模型)集成。我们重点介绍了这个令人兴奋的跨学科领域的有希望的研究机会。可以在https://github.com/digailab/awesome-hyperbolic-graph-learning上找到全面的存储库。
Graph representation learning in Euclidean space, despite its widespread adoption and proven utility in many domains, often struggles to effectively capture the inherent hierarchical and complex relational structures prevalent in real-world data, particularly for datasets exhibiting a highly non-Euclidean latent anatomy or power-law distributions. Hyperbolic geometry, with its constant negative curvature and exponential growth property, naturally accommodates such structures, offering a promising alternative for learning rich graph representations. This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL). We systematically categorize and analyze existing methods broadly dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms. Beyond methodologies, we extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios, demonstrating the broad applicability and effectiveness of hyperbolic geometry in real-world graph learning tasks. Most importantly, we identify several key challenges that serve as directions for advancing HGL, including handling complex data structures, developing geometry-aware learning objectives, ensuring trustworthy and scalable implementations, and integrating with foundation models, e.g., large language models. We highlight promising research opportunities in this exciting interdisciplinary area. A comprehensive repository can be found at https://github.com/digailab/awesome-hyperbolic-graph-learning.