论文标题

Tescalib:通过不确定分析的自动驾驶车辆的LIDAR和立体声摄像头的无目标外部自我校准

TEScalib: Targetless Extrinsic Self-Calibration of LiDAR and Stereo Camera for Automated Driving Vehicles with Uncertainty Analysis

论文作者

Hu, Haohao, Han, Fengze, Bieder, Frank, Pauls, Jan-Hendrik, Stiller, Christoph

论文摘要

在本文中,我们提出了Tescalib,这是一种新型的LIDAR和立体声摄像机的外部外部自我校准方法,使用周围环境的几何和光度信息,而没有任何用于自动驾驶车辆的校准目标。由于LiDAR和立体声摄像头广泛用于自动驾驶车辆的传感器数据融合,因此它们的外部校准非常重要。但是,大多数激光雷达和立体声摄像机校准方法主要基于目标,因此耗时。即使在过去几年中,即使是新开发的无目标方法也是不准确或不适合驾驶平台。 为了解决这些问题,我们介绍了Tescalib。通过应用基于3D网格重建的点云注册,几何信息可用于估算LIDAR以准确,稳健地立体化摄像机外部参数。为了校准立体声摄像机,建立了光度误差函数,并且涉及激光雷达深度以将关键点从一个相机转换为另一个相机。在驾驶过程中,这两个部分进行了迭代处理。除此之外,我们还提出了一种不确定性分析,以反映估计的外部参数的可靠性。我们在Kitti数据集上进行评估的Tescalib方法取得了非常有希望的结果。

In this paper, we present TEScalib, a novel extrinsic self-calibration approach of LiDAR and stereo camera using the geometric and photometric information of surrounding environments without any calibration targets for automated driving vehicles. Since LiDAR and stereo camera are widely used for sensor data fusion on automated driving vehicles, their extrinsic calibration is highly important. However, most of the LiDAR and stereo camera calibration approaches are mainly target-based and therefore time consuming. Even the newly developed targetless approaches in last years are either inaccurate or unsuitable for driving platforms. To address those problems, we introduce TEScalib. By applying a 3D mesh reconstruction-based point cloud registration, the geometric information is used to estimate the LiDAR to stereo camera extrinsic parameters accurately and robustly. To calibrate the stereo camera, a photometric error function is builded and the LiDAR depth is involved to transform key points from one camera to another. During driving, these two parts are processed iteratively. Besides that, we also propose an uncertainty analysis for reflecting the reliability of the estimated extrinsic parameters. Our TEScalib approach evaluated on the KITTI dataset achieves very promising results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源