论文标题

HGTE互插结构中的THZ棘轮效应

THz ratchet effect in HgTe interdigitated structures

论文作者

Yahniuk, I., Budkin, G. V., Kazakov, A., Otteneder, M., Ziegler, J., Weiss, D., Mikhailov, N. N., Dvoretskii, S. A., Wojciechowski, T., Bel'kov, V. V., Knap, W., Ganichev, S. D.

论文摘要

二维材料中棘轮效应的出现与将不对称性引入系统密切相关。通常,形成侧向不对称超晶格的双晶粒结构为研究这种现象提供了合适的平台。在这里,我们报告了基于HGTE的双颗粒结构中棘轮效应的观察,该结构具有不同的带结构特性。应用极化的Terahertz激光辐射,我们检测到线性和极化无关的棘轮,以及辐射热驱动的圆形棘轮效应。研究不同厚度的量子井(QW)的棘轮效应,我们观察到,信号的幅度大大增加,随着QW宽度的减小,QW宽度的最大值,最大值的设备由临界厚度托管dirac fermions的QW制成的设备。此外,扫地栅极电压幅度我们观察到对应于P型电导率的栅极电压的标志旋转振荡。振荡的幅度比导电QW的N型信号大两个以上的数量级。振荡和信号增强表明是由基于HGTE的QW的复杂价带结构引起的。这些棘轮电流的这些特征使这些材料成为开发THZ应用程序的理想平台。

The emergence of ratchet effects in two-dimensional materials is strongly correlated with the introduction of asymmetry into the system. In general, dual-grating-gate structures forming lateral asymmetric superlattices provide a suitable platform for studying this phenomenon. Here, we report on the observation of ratchet effects in HgTe-based dual-grating-gate structures hosting different band structure properties. Applying polarized terahertz laser radiation we detected linear and polarization independent ratchets, as well as an radiation-helicity driven circular ratchet effect. Studying the ratchet effect in devices made of quantum wells (QWs) of different thickness we observed that the magnitude of the signal substantially increases with decreasing QW width with a maximum value for devices made of QWs of critical thickness hosting Dirac fermions. Furthermore, sweeping the gate voltage amplitude we observed sign-alternating oscillations for gate voltages corresponding to p-type conductivity. The amplitude of the oscillations is more than two orders of magnitude larger than the signal for n-type conducting QWs. The oscillations and the signal enhancement are shown to be caused by the complex valence band structure of HgTe-based QWs. These peculiar features of the ratchet currents make these materials an ideal platform for the development of THz applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源