论文标题
1930年至2018年美国的位置级别的城市农村指数
Place-level urban-rural indices for the United States from 1930 to 2018
论文作者
论文摘要
农村城市分类对于分析农村城市连续性的地理,人口,环境和社会过程至关重要。但是,大多数现有的分类仅在相对汇总的空间尺度上可用,例如在美国的县范围内。当感兴趣的过程高度局部时,在高空间分辨率上缺乏乡村或城市的措施会带来重大问题,因为将农村城镇和村庄纳入了侵占大都市地区。此外,现有的农村城市分类通常会随着时间的流逝而不一致,或者需要复杂的多源输入数据(例如,遥感观测值或道路网络数据),因此禁止对农村地区动态进行纵向分析。在这里,我们开发了一组基于距离和空间网络的方法,以始终长时间的空间分辨率始终估计位置的偏远和乡村。我们通过在1930年至2018年在美国30,000个地方建造城市气质指数来证明我们的方法的实用性,并进一步测试了我们与各种评估数据集的结果的合理性。我们将这些指数称为地位级的城市农村指数(复数),并使所得数据集公开可用(https://doi.org/10.3886/e162941),以便其他研究人员可以对城市和农村变化进行长期,细衰减的分析。此外,由于输入数据的简单性质,可以将这些方法推广到世界的其他时间段或区域,尤其是数据筛选环境。
Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social processes across the rural-urban continuum. Most existing classifications are, however, only available at relatively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or urbanness measures at high spatial resolution poses significant problems when the process of interest is highly localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, existing rural-urban classifications are often inconsistent over time, or require complex, multi-source input data (e.g., remote sensing observations or road network data), thus, prohibiting the longitudinal analysis of rural-urban dynamics. Here, we develop a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of places at fine spatial resolution, over long periods of time. We demonstrate the utility of our approach by constructing indices of urbanness for 30,000 places in the United States from 1930 to 2018 and further test the plausibility of our results against a variety of evaluation datasets. We call these indices the place-level urban-rural index (PLURAL) and make the resulting datasets publicly available (https://doi.org/10.3886/E162941) so that other researchers can conduct long-term, fine-grained analyses of urban and rural change. In addition, due to the simplistic nature of the input data, these methods can be generalized to other time periods or regions of the world, particularly to data-scarce environments.