论文标题
关节摄像头固有和激光摄像机外部校准
Joint Camera Intrinsic and LiDAR-Camera Extrinsic Calibration
论文作者
论文摘要
基于传感器的环境感知是自主驾驶系统的关键步骤,多个传感器之间的准确校准起着至关重要的作用。为了校准激光雷达和相机,现有方法通常是先校准相机的内在,然后校准激光雷达和相机的外部。如果在第一阶段无法正确校准摄像机的固有,则可以准确校准激光镜像外部电源并不容易。由于相机的复杂内部结构以及缺乏对摄像机内在校准的有效定量评估方法,因此在实际校准中,由于摄像机内在参数的微小误差,外部参数校准的准确性通常会降低。为此,我们提出了一种新型的基于目标的关节校准方法,用于摄像机固有和激光镜外插道参数。首先,我们设计了一个新颖的校准板图案,在棋盘上增加了四个圆形孔,以定位激光姿势。随后,在棋盘板的再投影约束和圆形孔特征下定义的成本函数旨在求解相机的内在参数,失真因子和激光相机外部外部参数。最后,定量和定性实验是在实际和模拟环境中进行的,结果表明该方法可以达到准确性和鲁棒性能。开源代码可在https://github.com/opencalib/jointcalib上找到。
Sensor-based environmental perception is a crucial step for autonomous driving systems, for which an accurate calibration between multiple sensors plays a critical role. For the calibration of LiDAR and camera, the existing method is generally to calibrate the intrinsic of the camera first and then calibrate the extrinsic of the LiDAR and camera. If the camera's intrinsic is not calibrated correctly in the first stage, it isn't easy to calibrate the LiDAR-camera extrinsic accurately. Due to the complex internal structure of the camera and the lack of an effective quantitative evaluation method for the camera's intrinsic calibration, in the actual calibration, the accuracy of extrinsic parameter calibration is often reduced due to the tiny error of the camera's intrinsic parameters. To this end, we propose a novel target-based joint calibration method of the camera intrinsic and LiDAR-camera extrinsic parameters. Firstly, we design a novel calibration board pattern, adding four circular holes around the checkerboard for locating the LiDAR pose. Subsequently, a cost function defined under the reprojection constraints of the checkerboard and circular holes features is designed to solve the camera's intrinsic parameters, distortion factor, and LiDAR-camera extrinsic parameter. In the end, quantitative and qualitative experiments are conducted in actual and simulated environments, and the result shows the proposed method can achieve accuracy and robustness performance. The open-source code is available at https://github.com/OpenCalib/JointCalib.