论文标题
在Li,Pertusi和Zhao的符号变化时期
On the period of Li, Pertusi and Zhao's symplectic variety
论文作者
论文摘要
我们将perego和rapagnetta的经典结果扩展到OG10型托管的模量空间上,到Bridgeland可在Cubic Fourdold的Kuznetsov组件上的Bridgeland可分离物体的模量空间。特别是,我们确定了这类品种的时期,并使用它来理解它们在K3表面上对带束的模束空间的含义。
We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.