论文标题
细菌纤维素水凝胶中的分子和胶体转运
Molecular and colloidal transport in bacterial cellulose hydrogels
论文作者
论文摘要
细菌纤维素生物膜是控制膜中的运输和保护细菌菌落的强型纳米纤维的复杂网络。细菌纤维素膜的各种应用的设计还依赖于通过纤维网的理解和控制传输,而在通过实验表征结构的实验表征和所得扩散的指导下,膜的传输模拟是最准确的。通过这种膜的扩散是其关键的微观长度尺度的函数,确定分子以及颗粒和微生物如何渗透它们。我们使用显微镜研究独特的细菌纤维素膜结构,并量化各种大小示踪剂颗粒和大分子的迁移率动力学。在膜中阻碍了移动性,因为限制和局部运动在很大程度上取决于相对于扩散的示踪剂的空隙尺寸。生物膜具有纳米纤维网状的交替致密和多孔层的自然周期性结构,我们通过发酵条件调整间距的大小。微米大小的颗粒可以通过多孔层扩散,但无法穿透密集的层。多孔层中的示踪剂迁移率是各向同性的,表明那里有很大程度的随机孔结构。在整个薄膜中的分子扩散仅通过结构曲折略微降低。细菌纤维素网络中传输变化的知识可用于指导这些结构中共生培养的设计,并增强其在应用生物医学植入物,伤口敷料,实验室成长的肉和传感器中的应用。
Bacterial cellulose biofilms are complex networks of strong interwoven nanofibers that control transport and protect bacterial colonies in the film. Design of diverse applications of bacterial cellulose films also relies on understanding and controlling transport through the fiber mesh, and transport simulations of the films are most accurate when guided by experimental characterization of the structures and the resultant diffusion inside. Diffusion through such films is a function of their key microstructural length scales, determining how molecules, as well as particles and microorganisms, permeate them. We use microscopy to study the unique bacterial cellulose film structure and quantify the mobility dynamics of various sizes of tracer particles and macromolecules. Mobility is hindered within the films, as confinement and local movement strongly depend on void size relative to diffusing tracers. The biofilms have a naturally periodic structure of alternating dense and porous layers of nanofiber mesh, and we tune the magnitude of the spacing via fermentation conditions. Micron-sized particles can diffuse through the porous layers, but can not penetrate the dense layers. Tracer mobility in the porous layers is isotropic, indicating a largely random pore structure there. Molecular diffusion through the whole film is only slightly reduced by the structural tortuosity. Knowledge of transport variations within bacterial cellulose networks can be used to guide design of symbiotic cultures in these structures and enhance their use in applications biomedical implants, wound dressings, lab-grown meat, and sensors.