论文标题
基于深度学习的CSI反馈的可变率和新颖的量化
Changeable Rate and Novel Quantization for CSI Feedback Based on Deep Learning
论文作者
论文摘要
基于深度学习(DL)的基于频道的通道状态信息(CSI)反馈提高了频划分双工模式的大量多输入多输出(MIMO)系统的容量和能源效率。但是,随着时间变化的带宽资源,需要多个具有不同反馈开销的神经网络。这些型号的用户设备(UE)和基站(BS)所需的存储空间随型号的数量线性增加。在本文中,我们提出了一个基于新型的量化方案的基于DL的可变率框架,以提高CSI反馈系统的效率和可行性。该框架可以将所有网络层重新升级,以实现可更换开销的CSI反馈,以优化UE和BS侧的存储效率。在此框架中设计的量化器可以避免传统量化方案面临的归一化和梯度问题。具体而言,我们通过引入反馈开销控制单元,提出了两个基于DL的可转换率CSI反馈网络CH-CSINETPRO和CH-DUALNETSPH。然后,开发了可插入的量化块(PQB),以进一步以端到端的方式提高CSI反馈的编码效率。与现有的CSI反馈方法相比,所提出的框架通过变化速率方案将存储空间节省约50%,并通过量化模块提高了编码效率。
Deep learning (DL)-based channel state information (CSI) feedback improves the capacity and energy efficiency of massive multiple-input multiple-output (MIMO) systems in frequency division duplexing mode. However, multiple neural networks with different lengths of feedback overhead are required by time-varying bandwidth resources. The storage space required at the user equipment (UE) and the base station (BS) for these models increases linearly with the number of models. In this paper, we propose a DL-based changeable-rate framework with novel quantization scheme to improve the efficiency and feasibility of CSI feedback systems. This framework can reutilize all the network layers to achieve overhead-changeable CSI feedback to optimize the storage efficiency at the UE and the BS sides. Designed quantizer in this framework can avoid the normalization and gradient problems faced by traditional quantization schemes. Specifically, we propose two DL-based changeable-rate CSI feedback networks CH-CsiNetPro and CH-DualNetSph by introducing a feedback overhead control unit. Then, a pluggable quantization block (PQB) is developed to further improve the encoding efficiency of CSI feedback in an end-to-end way. Compared with existing CSI feedback methods, the proposed framework saves the storage space by about 50% with changeable-rate scheme and improves the encoding efficiency with the quantization module.