论文标题
在类别II的D模型上
On D-modules of categories II
论文作者
论文摘要
在我们的论文“类别I的D模块上”的论文中,我们提供了两种与稳定无限类别家族相关的复杂计算周期性循环同源性构建D模块结构的方法。一个基于分解同源性的规范扩展。另一种方法使用了Hochschild的共同体和Hochschild同源性,Kodaira-Spencer Map用于稳定的无穷大家庭,Koszul二元性以及DG Legebras和尖头正式堆栈之间的关系。在本文中,我们证明了两个产生的结构夹层。
In our paper "On D-module of categories I", we provide two different methods of constructing D-module structures on the complex computing periodic cyclic homology associated to a family of stable infinity categories. One is based on a canonical extension of factorization homology. Another method uses the pair of Hochschild cohomology and Hochschild homology, Kodaira-Spencer map for a family of stable infinity categories, Koszul dualities,and the relation between dg Lie algebras and pointed formal stacks. In this paper, we prove that two resulting structures coindice.