论文标题

过滤器增强的MLP是顺序推荐所需的全部

Filter-enhanced MLP is All You Need for Sequential Recommendation

论文作者

Zhou, Kun, Yu, Hui, Zhao, Wayne Xin, Wen, Ji-Rong

论文摘要

最近,在顺序推荐的任务中应用了深层神经网络,例如RNN,CNN和变压器,该任务旨在从已记录的用户行为数据中捕获动态偏好特性,以进行准确的建议。但是,在在线平台中,已记录的用户行为数据不可避免地包含噪声,并且深层建议模型易于在这些记录的数据上过度拟合。为了解决这个问题,我们借用了从信号处理中过滤算法的想法,从而减弱了频域中的噪声。在我们的经验实验中,我们发现过滤算法可以基本上改善代表性的顺序推荐模型,并将简单的过滤算法(例如频道停止滤波器)与全MLP体系结构集成在一起,甚至可以超过基于竞争变压器的模型。由此激励,我们建议\ textbf {fmlp-rec},这是一个具有可学习过滤器的全MLP模型,用于顺序推荐任务。全MLP体系结构赋予我们的模型较低的时间复杂性,可学习的过滤器可以自适应地衰减频域中的噪声信息。在八个现实世界数据集上进行的广泛实验证明了我们提出的方法比竞争性RNN,CNN,GNN和基于变压器的方法的优越性。我们的代码和数据在链接上公开可用:\ textColor {blue} {\ url {https://github.com/rucaibox/fmlp-rec}}}。

Recently, deep neural networks such as RNN, CNN and Transformer have been applied in the task of sequential recommendation, which aims to capture the dynamic preference characteristics from logged user behavior data for accurate recommendation. However, in online platforms, logged user behavior data is inevitable to contain noise, and deep recommendation models are easy to overfit on these logged data. To tackle this problem, we borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain. In our empirical experiments, we find that filtering algorithms can substantially improve representative sequential recommendation models, and integrating simple filtering algorithms (eg Band-Stop Filter) with an all-MLP architecture can even outperform competitive Transformer-based models. Motivated by it, we propose \textbf{FMLP-Rec}, an all-MLP model with learnable filters for sequential recommendation task. The all-MLP architecture endows our model with lower time complexity, and the learnable filters can adaptively attenuate the noise information in the frequency domain. Extensive experiments conducted on eight real-world datasets demonstrate the superiority of our proposed method over competitive RNN, CNN, GNN and Transformer-based methods. Our code and data are publicly available at the link: \textcolor{blue}{\url{https://github.com/RUCAIBox/FMLP-Rec}}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源