论文标题
迈向独立于设备的深度学习方法,以自动分割超声型胎儿脑结构:多中心和多设备验证
Towards A Device-Independent Deep Learning Approach for the Automated Segmentation of Sonographic Fetal Brain Structures: A Multi-Center and Multi-Device Validation
论文作者
论文摘要
产前超声检查的质量评估对于筛查胎儿中枢神经系统(CNS)异常至关重要。胎儿脑结构的解释是高度主观的,专业的驱动的,需要多年的培训经验,从而限制了所有怀孕母亲的优质产前护理。随着人工智能(AI)的最新进展,特别是深度学习(DL),已经提出了通过对可靠评估生长和神经发育的可靠评估所必需的语义分割来进行精确解剖学识别的帮助,并提出了结构异常的检测。但是,现有作品仅从任何一种轴向视图(例如,经脑板,透脑脑室)中识别出某些结构(例如,Cavum septum septum pellucidum,外侧心室,小脑,小脑),限制了根据练习指南筛选CNS Anomalies所需的彻底解剖学评估的范围。此外,现有作品并未分析来自多个超声设备和中心图像的这些DL算法的普遍性,从而限制了它们的现实临床影响。在这项研究中,我们提出了一个基于DL的分割框架,用于从胎儿脑USG图像(2D)的2个轴向平面的10个关键胎儿脑结构的自动分割。我们开发了一种自定义的U-NET变体,该变体将InceptionV4块用作特征提取器,并利用自定义域特异性数据增强。数量上,平均值(10个结构;测试集1/2/3/4)骰子骰子为:0.827,0.802,0.731,0.783。不管USG设备/中心如何,DL分割在质量上与其手动分割相当。拟议的DL系统提供了有前途且可推广的性能(多中心,多设备),并提供了证据,以支持设备引起的图像质量变化(对普遍性的挑战),并使用UMAP分析。
Quality assessment of prenatal ultrasonography is essential for the screening of fetal central nervous system (CNS) anomalies. The interpretation of fetal brain structures is highly subjective, expertise-driven, and requires years of training experience, limiting quality prenatal care for all pregnant mothers. With recent advancement in Artificial Intelligence (AI), specifically deep learning (DL), assistance in precise anatomy identification through semantic segmentation essential for the reliable assessment of growth and neurodevelopment, and detection of structural abnormalities have been proposed. However, existing works only identify certain structures (e.g., cavum septum pellucidum, lateral ventricles, cerebellum) from either of the axial views (transventricular, transcerebellar), limiting the scope for a thorough anatomical assessment as per practice guidelines necessary for the screening of CNS anomalies. Further, existing works do not analyze the generalizability of these DL algorithms across images from multiple ultrasound devices and centers, thus, limiting their real-world clinical impact. In this study, we propose a DL based segmentation framework for the automated segmentation of 10 key fetal brain structures from 2 axial planes from fetal brain USG images (2D). We developed a custom U-Net variant that uses inceptionv4 block as a feature extractor and leverages custom domain-specific data augmentation. Quantitatively, the mean (10 structures; test sets 1/2/3/4) Dice-coefficients were: 0.827, 0.802, 0.731, 0.783. Irrespective of the USG device/center, the DL segmentations were qualitatively comparable to their manual segmentations. The proposed DL system offered a promising and generalizable performance (multi-centers, multi-device) and also presents evidence in support of device-induced variation in image quality (a challenge to generalizibility) by using UMAP analysis.