论文标题
ESW边缘重量:集合随机分水岭边缘量高光谱图像分类
ESW Edge-Weights : Ensemble Stochastic Watershed Edge-Weights for Hyperspectral Image Classification
论文作者
论文摘要
高光谱图像(HSI)分类是积极研究的主题。 HSI分类的主要挑战之一是缺乏可靠的标记样品。提出了各种半监督和无监督的分类方法来处理标记的样品数量少。其中的主要是图形卷积网络(GCN)及其变体。这些方法利用了半监督和无监督分类的图形结构。虽然其中几种方法隐含地构建了边缘权重,但据我们所知,并没有做出太多的工作来明确估算边缘重量。在本文中,我们明确地估算了边缘重量,并将其用于下游分类任务 - 半监督和不受监督。提出的边缘重量基于两个关键见解 - (a)合奏降低方差,(b)HSI数据集中的类,并且特征相似性仅具有单方面的含义。也就是说,尽管同一类也具有相似的功能,但类似的功能并不一定意味着相同的类。利用这些利用,我们使用特征子样本的分水岭汇总来估计边缘重量。这些边缘权重评估了半监督和无监督的分类任务。半监督任务的评估使用基于随机步行的方法。对于无监督的情况,我们使用图形卷积网络(GCN)使用一个简单的过滤器。在这两种情况下,提出的边缘权重优于传统的计算边缘权重的方法 - 欧几里得距离和余弦相似性。最简单的GCN令人着迷,最简单的GCN获得的结果与最近的最新面貌相当。
Hyperspectral image (HSI) classification is a topic of active research. One of the main challenges of HSI classification is the lack of reliable labelled samples. Various semi-supervised and unsupervised classification methods are proposed to handle the low number of labelled samples. Chief among them are graph convolution networks (GCN) and their variants. These approaches exploit the graph structure for semi-supervised and unsupervised classification. While several of these methods implicitly construct edge-weights, to our knowledge, not much work has been done to estimate the edge-weights explicitly. In this article, we estimate the edge-weights explicitly and use them for the downstream classification tasks - both semi-supervised and unsupervised. The proposed edge-weights are based on two key insights - (a) Ensembles reduce the variance and (b) Classes in HSI datasets and feature similarity have only one-sided implications. That is, while same classes would have similar features, similar features do not necessarily imply the same classes. Exploiting these, we estimate the edge-weights using an aggregate of ensembles of watersheds over subsamples of features. These edge weights are evaluated for both semi-supervised and unsupervised classification tasks. The evaluation for semi-supervised tasks uses Random-Walk based approach. For the unsupervised case, we use a simple filter using a graph convolution network (GCN). In both these cases, the proposed edge weights outperform the traditional approaches to compute edge-weights - Euclidean distances and cosine similarities. Fascinatingly, with the proposed edge-weights, the simplest GCN obtained results comparable to the recent state-of-the-art.