论文标题
量化和经典正交代数的通用Gelfand-Tsetlin模块
Generic Gelfand-Tsetlin Modules of Quantized and Classical Orthogonal Algebras
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We construct infinite-dimensional analogues of finite-dimensional simple modules of the nonstandard $q$-deformed enveloping algebra $U_q'(\mathfrak{so}_n)$ defined by Gavrilik and Klimyk, and we do the same for the classical universal enveloping algebra $U(\mathfrak{so}_n)$. In this paper we only consider the case when $q$ is not a root of unity, and $q\to 1$ for the classical case. Extending work by Mazorchuk on $\mathfrak{so}_n$, we provide rational matrix coefficients for these infinite-dimensional modules of both $U_q'(\mathfrak{so}_n)$ and $U(\mathfrak{so}_n)$. We use these modules with rationalized formulas to embed the respective algebras into skew group algebras of shift operators. Casimir elements of $U_q'(\mathfrak{so}_n)$ were given by Gavrilik and Iorgov, and we consider the commutative subalgebra $Γ\subset U_q'(\mathfrak{so}_n)$ generated by these elements and the corresponding subalgebra $Γ_1\subset U(\mathfrak{so}_n)$. The images of $Γ$ and $Γ_1$ under their respective embeddings into skew group algebras are equal to invariant algebras under certain group actions. We use these facts to show $Γ$ is a Harish-Chandra subalgebra of $U_q'(\mathfrak{so}_n)$ and $Γ_1$ is a Harish-Chandra subalgebra of $U(\mathfrak{so}_n)$.