论文标题

重建损失对VAE解散的含义

Overlooked Implications of the Reconstruction Loss for VAE Disentanglement

论文作者

Michlo, Nathan, Klein, Richard, James, Steven

论文摘要

带有变异自动编码器(VAE)的学习分解表示,通常归因于损失的正则化组成部分。在这项工作中,我们强调了数据与损失的重建项之间的相互作用,这是VAE中解散的主要贡献者。我们表明,根据典型的VAE重建损失,标准基准数据集在数据中具有意外的相关性和数据轴之间的意外相关性。我们的工作利用了这种关系,为在给定的重建损失下构成对抗数据集的理论提供了理论。我们通过构建一个示例数据集来验证这一点,该数据集可防止最新框架中的分离,同时保持人直觉的基础真相。最后,我们通过设计一个示例重建损失,可以再次感知地面实际因素来重新启用分解。我们的发现证明了分解的主观性质以及考虑基础真相因素,数据以及尤其是文献中未经认可的重建损失之间相互作用的重要性。

Learning disentangled representations with variational autoencoders (VAEs) is often attributed to the regularisation component of the loss. In this work, we highlight the interaction between data and the reconstruction term of the loss as the main contributor to disentanglement in VAEs. We show that standard benchmark datasets have unintended correlations between their subjective ground-truth factors and perceived axes in the data according to typical VAE reconstruction losses. Our work exploits this relationship to provide a theory for what constitutes an adversarial dataset under a given reconstruction loss. We verify this by constructing an example dataset that prevents disentanglement in state-of-the-art frameworks while maintaining human-intuitive ground-truth factors. Finally, we re-enable disentanglement by designing an example reconstruction loss that is once again able to perceive the ground-truth factors. Our findings demonstrate the subjective nature of disentanglement and the importance of considering the interaction between the ground-truth factors, data and notably, the reconstruction loss, which is under-recognised in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源