论文标题
从$ω$ background中的精制拓扑振幅中的弦乐理论
Refined Topological Amplitudes from the $Ω$-Background in String Theory
论文作者
论文摘要
最近显示,$ \ Mathcal {n} $ = 2个字符串拓扑幅度在异弱弱耦合限制中产生六维的梅尔文空间,从而在弦乐理论中对$ω$ background的描述进行了描述,在该理论中,可以精确地研究字符串的传播。在这项工作中,我们将分析概括为具有两个独立变形参数的$ω$ background的精制情况。现在,梅尔文空间是十维的,并通过对异源超弦的内部K3紧凑型歧管进行的动作扩展,对应于字段理论描述中的$ {\ rm su(2)} _ r $旋转。我们确定了杂质拓扑振幅的类别,意识到这一背景是两个反自我的重力群的散射和任意数量的反二重性重力体,dilaton多重的自dual矢量场以及沿着K3的自动磁性磁通的散射。在现场理论限制中,我们的结果正确地再现了Nekrasov自由能的扰动部分,在两个均等参数都打开的情况下。
It was recently shown that the $\mathcal{N}$ = 2 string topological amplitudes in the heterotic weak coupling limit generate a six-dimensional Melvin space, providing a description of the $Ω$-background in string theory, where string propagation can be exactly studied. In this work, we generalise the analysis to the refined case of the $Ω$-background with two independent deformation parameters. The Melvin space is now ten-dimensional and is extended by an action on the internal K3 compactification manifold of the heterotic superstring, corresponding to an ${\rm SU(2)}_R$ rotation in the field theory description. We identify the class of heterotic topological amplitudes realising this background as the scattering of two anti-self-dual gravitons and arbitrary numbers of anti-self-dual graviphotons, self-dual vector fields of the dilaton multiplet, together with self-dual magnetic fluxes along the K3. In the field theory limit, our result correctly reproduces the perturbative part of the Nekrasov free energy in the case where both equivariant parameters are turned on.