论文标题

现实世界的盲目超级分辨率通过特征匹配与隐式高分辨率先验

Real-World Blind Super-Resolution via Feature Matching with Implicit High-Resolution Priors

论文作者

Chen, Chaofeng, Shi, Xinyu, Qin, Yipeng, Li, Xiaoming, Han, Xiaoguang, Yang, Tao, Guo, Shihui

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A key challenge of real-world image super-resolution (SR) is to recover the missing details in low-resolution (LR) images with complex unknown degradations (e.g., downsampling, noise and compression). Most previous works restore such missing details in the image space. To cope with the high diversity of natural images, they either rely on the unstable GANs that are difficult to train and prone to artifacts, or resort to explicit references from high-resolution (HR) images that are usually unavailable. In this work, we propose Feature Matching SR (FeMaSR), which restores realistic HR images in a much more compact feature space. Unlike image-space methods, our FeMaSR restores HR images by matching distorted LR image {\it features} to their distortion-free HR counterparts in our pretrained HR priors, and decoding the matched features to obtain realistic HR images. Specifically, our HR priors contain a discrete feature codebook and its associated decoder, which are pretrained on HR images with a Vector Quantized Generative Adversarial Network (VQGAN). Notably, we incorporate a novel semantic regularization in VQGAN to improve the quality of reconstructed images. For the feature matching, we first extract LR features with an LR encoder consisting of several Swin Transformer blocks and then follow a simple nearest neighbour strategy to match them with the pretrained codebook. In particular, we equip the LR encoder with residual shortcut connections to the decoder, which is critical to the optimization of feature matching loss and also helps to complement the possible feature matching errors. Experimental results show that our approach produces more realistic HR images than previous methods. Codes are released at \url{https://github.com/chaofengc/FeMaSR}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源