论文标题
部分可观测时空混沌系统的无模型预测
Improving position resolution of neutron detectors with ultra-thin B4C foils
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A new technique for detection of slow neutrons with gaseous detectors using ultra-thin layers with 10B atoms is presented. The reaction between a thermal neutron and a 10B atom releases 2 secondary particles, namely a 7Li ion and an alpha particle, which due to momentum conservation are emitted in opposite directions, along the same line (back to back). Current boron coated neutron detectors are equipped with 10B films with thicknesses of several micrometers, deposited on very thick substrate plates. However, since the ranges of the 7Li ion and the alpha particle are of few micrometeres in most materials, one of these particles is always lost in the 10B layer or substrate. As such, these detectors lose the ability to reconstruct the reaction line of action and to precisely determine the neutron position, as only one of the two secondary particles track can be measured. With the technique now presented, the sum of the 10B layer and the substrate thicknesses is small enough to allow for both secondary particles to escape and ionize the gas in opposite sides of the 10B converter foil. Independent readout structures, one on each side of the 10B converter foil, detect each secondary particle and determine its track centroid and the deposited energy. Since the two secondary particles are emitted back to back, the neutron position can be obtained by combining the information recorded by the two readout structures. Through GEANT4 simulations, we verified that the spatial resolution can be significantly improved: our results show that, by using a B4C layer with a thickness of 1 micron on a 0.9 micron Mylar substrate, the spatial resolution can by improved by a factor of 8, compared to conventional detectors with thick 10B detection layers.