论文标题

快速准确的数据驱动的模拟框架,用于接触密集型紧密的机器人组装任务

Fast and Accurate Data-Driven Simulation Framework for Contact-Intensive Tight-Tolerance Robotic Assembly Tasks

论文作者

Yoon, Jaemin, Lee, Minji, Son, Dongwon, Lee, Dongjun

论文摘要

我们提出了一个新颖的快速,准确的模拟框架,用于接触密集型紧密的机器人组装任务。我们框架的关键组成部分如下:1)具有特定变量输入网络的数据驱动的接触点聚类,该网络已明确训练以实现模拟精度(具有实际的实验数据),并能够适应复杂/非convex对象形状; 2)接触力解决方案,通过使用其物体增强的接触机制,可以精确/鲁棒地强制执行接触物理(即无穿透性,库仑摩擦,最大能量耗散); 3)与神经网络的接触检测,该神经网络与每个接触点平行,因此,即使对于没有排气配对测试的复杂形状对象,也可以非常快速地计算出来。 4)与PMI(被动中点集成)的时间整合,其离散的被动率提高了整体模拟精度,稳定性和速度。然后,我们为两个广泛的/基准的接触密集型紧密耐受性任务实施了建议的框架,即钉孔组件和螺栓 - 纽约组装,并根据实际实验数据验证其速度和准确性。值得一提的是,我们提出的仿真框架也适用于其他一般性接触密集型紧密的机器人组装任务。我们还将其性能与其他物理引擎进行比较,并通过虚拟螺栓效应任务来表现其稳健性。

We propose a novel fast and accurate simulation framework for contact-intensive tight-tolerance robotic assembly tasks. The key components of our framework are as follows: 1) data-driven contact point clustering with a certain variable-input network, which is explicitly trained for simulation accuracy (with real experimental data) and able to accommodate complex/non-convex object shapes; 2) contact force solving, which precisely/robustly enforces physics of contact (i.e., no penetration, Coulomb friction, maximum energy dissipation) with contact mechanics of contact nodes augmented with that of their object; 3) contact detection with a neural network, which is parallelized for each contact point, thus, can be computed very quickly even for complex shape objects with no exhaust pair-wise test; and 4) time integration with PMI (passive mid-point integration), whose discrete-time passivity improves overall simulation accuracy, stability, and speed. We then implement our proposed framework for two widely-encountered/benchmarked contact-intensive tight-tolerance tasks, namely, peg-in-hole assembly and bolt-nut assembly, and validate its speed and accuracy against real experimental data. It is worthwhile to mention that our proposed simulation framework is applicable to other general contact-intensive tight-tolerance robotic assembly tasks as well. We also compare its performance with other physics engines and manifest its robustness via haptic rendering of virtual bolting task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源